Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress.

نویسندگان

  • Aaron C Asensio
  • Daniel Marino
  • Euan K James
  • Idoia Ariz
  • Cesar Arrese-Igor
  • Pedro M Aparicio-Tejo
  • Raúl Arredondo-Peter
  • Jose F Moran
چکیده

Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species-producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase.

We investigated the role that manganese superoxide dismutase (MnSOD), an important antioxidant enzyme, may play in the drought tolerance of rice. MnSOD from pea (Pisum sativum) under the control of an oxidative stress-inducible SWPA2 promoter was introduced into chloroplasts of rice (Oryza sativa) by Agrobacterium-mediated transformation to develop drought-tolerant rice plants. Functional expre...

متن کامل

A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor.

The cDNAs encoding three germin-like proteins (PsGER1, PsGER2a, and PsGER2b) were isolated from Pisum sativum. The coding sequence of PsGER1 transiently expressed in tobacco leaves gave a protein with superoxide dismutase activity but no detectable oxalate oxidase activity according to in-gel activity stains. The transient expression of wheat germin gf-2.8 oxalate oxidase showed oxalate oxidase...

متن کامل

Isoenzymes of Superoxide Dismutase in Nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp.

The activity and isozymic composition of superoxide dismutase (SOD; EC 1.15.1.1) were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. formed by Rhizobium phaseoll 3622, R. Ieguminosarum 3855, and Bradyrhizobium sp. BR7301, respectively. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all thre...

متن کامل

Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules.

An iron-superoxide dismutase (FeSOD) with an unusual subcellular localization, VuFeSOD, has been purified from cowpea (Vigna unguiculata) nodules and leaves. The enzyme has two identical subunits of 27 kD that are not covalently bound. Comparison of its N-terminal sequence (NVAGINLL) with the cDNA-derived amino acid sequence showed that VuFeSOD is synthesized as a precursor with seven additiona...

متن کامل

Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.

In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2011